Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(4): e0284244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37053209

RESUMO

Plant derived compounds have always been an important source of medicines and have received significant attention in recent years due to their diverse pharmacological properties. Millions of plant-based herbal or traditional medicines are used to cure various types of cancers especially due to activation of proliferative genes. The aim of the present study was to characterize the altered and attenuated gene expression of the selected growth factor namely Transforming growth factor Beta -1 (TGFß1) and MYC in human hepatoma-derived (Huh7) liver cancer cell lines in response to extracts of Artemisia absinthium dissolved in selected organic solvents. Ethanolic, methanolic and acetone extract of different plant parts (leaf, stem and flowers) was used to access the antiproliferative activity by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. Quantitative Real-Time RT-PCR revealed that the transcript levels of TGFß1 are induced in the samples treated with methanolic extract of Artemisia absinthium. Furthermore, reduced expression levels of MYC gene was noticed in cancerous cells suggesting antiproliferative properties of the plant. This study further highlights the resistance profile of various microbes by antimicrobial susceptibility test with plant extracts. In addition, antidiabetic effect of Artemisia absinthium have also shown positive results. Our study elucidates the potentials of Artemisia absinthium as a medicinal plant, and highlights the differential expression of genes involved in its mitogenic and anti-proliferative activity with a brief account of its pharmacological action.


Assuntos
Artemisia absinthium , Artemisia , Neoplasias Hepáticas , Plantas Medicinais , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Extratos Vegetais/farmacologia , Solventes , Genes myc , Fator de Crescimento Transformador beta1/metabolismo
2.
Vaccines (Basel) ; 11(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36992255

RESUMO

Chemokine receptor type 4 (CXCR4) is a G protein-coupled receptor that plays an essential role in immune system function and disease processes. Our study aims to conduct a comparative structural and phylogenetic analysis of the CXCR4 protein to gain insights into its role in emerging and re-emerging diseases that impact the health of mammals. In this study, we analyzed the evolution of CXCR4 genes across a wide range of mammalian species. The phylogenetic study showed species-specific evolutionary patterns. Our analysis revealed novel insights into the evolutionary history of CXCR4, including genetic changes that may have led to functional differences in the protein. This study revealed that the structural homologous human proteins and mammalian CXCR4 shared many characteristics. We also examined the three-dimensional structure of CXCR4 and its interactions with other molecules in the cell. Our findings provide new insights into the genomic landscape of CXCR4 in the context of emerging and re-emerging diseases, which could inform the development of more effective treatments or prevention strategies. Overall, our study sheds light on the vital role of CXCR4 in mammalian health and disease, highlighting its potential as a therapeutic target for various diseases impacting human and animal health. These findings provided insight into the study of human immunological disorders by indicating that Chemokines may have activities identical to or similar to those in humans and several mammalian species.

3.
Molecules ; 28(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36677768

RESUMO

The delayed healing of wounds among people with diabetes is a severe problem worldwide. Hyperglycemia and increased levels of free radicals are the major inhibiting factors of wound healing in diabetic patients. Plant extracts are a rich source of polyphenols, allowing them to be an effective agent for wound healing. Drying temperature and extraction solvent highly affect the stability of polyphenols in plant materials. However, there is a need to optimize the extraction protocol to ensure the efficacy of the final product. For this purpose, the effects of drying temperature and solvents on the polyphenolic composition and diabetic wound healing activity of Moringa oleifera leaves were examined in the present research. Fresh leaves were oven dried at different temperatures (10 °C, 30 °C, 50 °C, and 100 °C) and extracted in three solvents (acetone, ethanol, and methanol) to obtain twelve extracts in total. The extracts were assessed for free radical scavenging and antihyperglycemic effects using DPPH (2,2-diphenylpicrylhydrazyl) and α- glucosidase inhibition assays. Alongside this, a scratch assay was performed to evaluate the cell migration activity of M. oleifera on the human retinal pigment epithelial cell line. The cytotoxicity of the plant extracts was assessed on human retinal pigment epithelial (RPE) and hepatocellular carcinoma (Huh-7) cell lines. Using high-performance liquid chromatography, phenolic compounds in extracts of M. oleifera were identified. We found that an ethanol-based extract prepared by drying the leaves at 10 °C contained the highest amounts of identified polyphenols. Moringa oleifera extracts showed remarkable antioxidant, antidiabetic, and cell migration properties. The best results were obtained with leaves dried at 10 °C and 30 °C. Decreased activities were observed with drying temperatures of 50 °C and above. Moreover, M. oleifera extracts exhibited no toxicity on RPE cells, and the same extracts were cytotoxic for Huh-7 cells. This study revealed that M. oleifera leaves extracts can enhance wound healing in diabetic conditions due to their antihyperglycemic, antioxidant, and cell migration effects. The leaves of this plant can be an excellent therapeutic option when extracted at optimum conditions.


Assuntos
Diabetes Mellitus , Moringa oleifera , Humanos , Antioxidantes/farmacologia , Antioxidantes/análise , Solventes , Moringa oleifera/química , Temperatura , Polifenóis/farmacologia , Polifenóis/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cicatrização , Hipoglicemiantes/farmacologia , Etanol , Folhas de Planta/química
4.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234800

RESUMO

Coronopus didymus (Brassicaceae) commonly known as lesser swine cress has been reported to be used for its pharmacological activities. This study aimed to evaluate the medicinal potential of C. didymus extracts against cancer, diabetes, infectious bacteria and oxidative stress and the identification of bioactive compounds present in these extracts. The effects of using different solvents for the extraction of C. didymus on the contents of major polyphenols and biological activities were investigated. Plant sample was shade dried, ground to a fine powder, and then soaked in pure acetone, ethanol and methanol. The highest contents of major polyphenols were found in methanol-based extract, i.e., chlorogenic acid, HB acid, kaempferol, ferulic acid, quercetin and benzoic acid with 305.02, 12.42, 11.5, 23.33, 975.7 and 428 mg/g of dry weight, respectively, followed by ethanol- and acetone-based extracts. The methanol-based extract also resulted in the highest antioxidant activities (56.76%), whereas the highest antiproliferative (76.36) and alpha glucosidase inhabitation (96.65) were demonstrated in ethanol-based extracts. No antibacterial property of C. didymus was observed against all the tested strains of bacteria. Further studies should be focused on the identification of specific bioactive compounds responsible for pharmacological activities.


Assuntos
Brassicaceae , Lepidium , Acetona , Animais , Antioxidantes/farmacologia , Ácido Benzoico , Ácido Clorogênico , Etanol , Hipoglicemiantes/farmacologia , Quempferóis , Metanol , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Pós , Quercetina , Solventes , Suínos , alfa-Glucosidases
5.
Artigo em Inglês | MEDLINE | ID: mdl-35463094

RESUMO

Treatment of diabetic wounds has always been a challenge for primary and acute health care. Eucalyptus alba has been reported to be used for the treatment of wounds and oxidative stress. Effects of using different temperatures and solvents for the extraction of Eucalyptus alba leaves were investigated in terms of diabetic wound healing activity. Leaves of E. alba were dried at 10°C, 30°C, 50°C, and 100°C, and dissolved in ethanol, methanol, and acetone to obtain a total of 12 extracts. All the extracts have remarkable antidiabetic, antioxidant, and cell proliferation activities. Among the tested extracts, highest activities were observed with leaves dried at 10°C and 30°C, whereas drying at 100°C resulted in the lowest activities. Ethanol-based extracts exhibited significantly increased cell proliferation compared with methanol- and acetone-based extract. The present study suggests that leaves of E. alba should be dried at temperature not more than 30°C and extracted in ethanol for optimum results. However, further studies should focus on the identification of specific bioactive compounds in E. alba leaves.

6.
Environ Pollut ; 304: 119249, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390420

RESUMO

Both cancer and diabetes mellitus are serious health issues, accounting more than 11 million deaths worldwide annually. Targeted use of plant-mediated nanoparticles (NPs) in treatment of ailments has outstanding results due to their salient properties. The current study was designed to investigate the safe production of silver nanoparticles (AgNPs) from Acacia nilotica. Different concentrations of AgNO3 were tested to optimize the protocol for the synthesis of AgNPs from the bark extract. It was demonstrated that 0.1 M and 3 mM were found to be the optimum concentrations for the synthesis of AgNPs. Standard characterization techniques such as UV-vis spectrophotometry, SEM, SEM-EDX micrograph, spot analysis, elemental mapping and XRD were used for the conformation of biosynthesis of AgNPs. Absorption spectrum of plant-mediated AgNPs under UV-vis spectrophotometer showed a strong peak at 380 nm and 420 nm for AgNPs synthesized at 0.1 M and 3 mM concentration of salt. The SEM results showed that AgNPs were present in variable shapes within average particle size ranging from (20-50 nm). Anticancer, antidiabetic and antioxidant potential of green AgNPs was investigated and they showed promising results as compared to the positive and negative controls. Hence, AgNPs were found potent therapeutic agent against the human liver cancer cell lines (HepG2), strong inhibitor for α-glucosidase enzyme activity and scavenging agent against free radicals that cause oxidative stress. Further studies are however needed to confirm the molecular mechanism and biochemical reactions responsible for the anticancer and antidiabetic activities of the particles.


Assuntos
Acacia , Nanopartículas Metálicas , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/química
7.
J Adv Res ; 24: 475-483, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32566283

RESUMO

Green nanomaterials have gained much attention due to their potential use as therapeutic agents. The present study investigated the production of silver nanoparticles (AgNPs) from a silver-resistant Bacillus safensis TEN12 strain, which was isolated from metal contaminated soil and taxonomically identified through 16S rRNA gene sequencing. The formation of AgNPs in bacterial culture was confirmed by using UV-vis spectroscopy with an absorption peak at 426.18 nm. Fourier transform infrared (FTIR) spectroscopy confirmed the involvement of capping proteins and alcohols for stabilization of AgNPs. Moreover, X-ray diffraction analysis (XRD), scanning and transmission electron microscopy (SEM and TEM) confirmed the crystalline nature and spherical shape of AgNPs with particle size ranging from 22.77 to 45.98 nm. The energy dispersive X-ray spectroscopy (EDX) revealed that 93.54% silver content is present in the nano-powder. AgNPs showed maximum antibacterial activity (20.35 mm and 19.69 mm inhibition zones) at 20 µg mL-1 concentration against Staphylococcus aureus and Escherichia coli, respectively and significantly reduced the pathogen density in broth culture. Furthermore, AgNPs demonstrated significant anticancer effects in the human liver cancer cell line (HepG2) in MTT assay, whereas, no cytotoxic effects were demonstrated by AgNPs on normal cell line (HEK293). The present study suggests that the biogenic AgNPs may substitute chemically synthesized drugs with wider applications as antibacterial and anticancer agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA